Identification of key genes associated with gastric cancer based on DNA microarray data

نویسنده

  • HUI SUN
چکیده

The present study aimed to identify genes with a differential pattern of expression in gastric cancer (GC), and to find novel molecular biomarkers for GC diagnosis and therapeutic treatment. The gene expression profile of GSE19826, including 12 GC samples and 15 normal controls, was downloaded from the Gene Expression Omnibus database. Differentially-expressed genes (DEGs) were screened in the GC samples compared with the normal controls. Two-way hierarchical clustering of DEGs was performed to distinguish the normal controls from the GC samples. The co-expression coefficient was analyzed among the DEGs using the data from COXPRESdb. The gene co-expression network was constructed based on the DEGs using Cytoscape software, and modules in the network were analyzed by ClusterOne and Bingo. Furthermore, enrichment analysis of the DEGs in the modules was performed using the Database for Annotation, Visualization and Integrated Discovery. In total, 596 DEGs in the GC samples and 57 co-expression gene pairs were identified. A total of 7 genes were enriched in the same module, for which the function was phosphate transport and which was annotated to participate in the extracellular matrix-receptor interaction pathway. These genes were collagen, type VI, α3 (COL6A3), COL1A2, COL1A1, COL5A2, thrombospondin 2, COL11A1 and COL5A1. Overall, the present study identified several biomarkers for GC using the gene expression profiling of human GC samples. The COL family is a promising prognostic marker for GC. Gene expression products represent candidate biomarkers endowed with great potential for the early screening and therapy of GC patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diagnosis of Breast Cancer Subtypes using the Selection of Effective Genes from Microarray Data

Introduction: Early diagnosis of breast cancer and the identification of effective genes are important issues in the treatment and survival of the patients. Gene expression data obtained using DNA microarray in combination with machine learning algorithms can provide new and intelligent methods for diagnosis of breast cancer. Methods: Data on the expression of 9216 genes from 84 patients across...

متن کامل

Classification and Biomarker Genes Selection for Cancer Gene Expression Data Using Random Forest

Background & objective: Microarray and next generation sequencing (NGS) data are the important sources to find helpful molecular patterns. Also, the great number of gene expression data increases the challenge of how to identify the biomarkers associated with cancer. The random forest (RF) is used to effectively analyze the problems of large-p and smal...

متن کامل

Gene Identification from Microarray Data for Diagnosis of Acute Myeloid and Lymphoblastic Leukemia Using a Sparse Gene Selection Method

Background: Microarray experiments can simultaneously determine the expression of thousands of genes. Identification of potential genes from microarray data for diagnosis of cancer is important. This study aimed to identify genes for the diagnosis of acute myeloid and lymphoblastic leukemia using a sparse feature selection method. Materials and Methods: In this descriptive study, the expressio...

متن کامل

The miR526b-5p-Related Single Nucleotide Polymorphisms, rs72618599, Located in 3\'-UTR of TCF3 Gene, is Associated with the Risk of Breast and Gastric Cancers

Introduction: Single nucleotide polymorphisms result in dysregulation of the proto-oncogene TCF3 gene, which is associated with the development, metastasis, and chemoresistance of different malignancies. Methods: GSE10810 microarray dataset and GEPIA2 online software were used to find differentially expressed genes and the TCF3 status in breast cancer (BC) and gastric cancer (GC), respectively....

متن کامل

SFLA Based Gene Selection Approach for Improving Cancer Classification Accuracy

 In this paper, we propose a new gene selection algorithm based on Shuffled Frog Leaping Algorithm that is called SFLA-FS. The proposed algorithm is used for improving cancer classification accuracy. Most of the biological datasets such as cancer datasets have a large number of genes and few samples. However, most of these genes are not usable in some tasks for example in cancer classification....

متن کامل

IN SILICO INVESTIGATION OF THE EFFECT OF LYCOPENE ON THE EXPRESSION OF BRCA1 AND BRCA2 INHIBITOR GENES IN PROSTATE CANCER

Background & Aims: Cancer is a genetic disease that results from mutations in genes that control cell activities. Prostate cancer is one of the most common types of cancers in men. Surgery, radiation therapy, hormone therapy, and chemotherapy are used to treat this disease. These treatments have numerous side effects after treatment, including impotence along with the high cost of treatment. In...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016